Pharmaceutical Activities and Effects of Various Abiotic Stresses/Elicitors on Bioactive Constituents of \textit{Psoralea corylifolia} L. (Bakuchi)

Avantika Pandey, Shashi Bhushan Agrawal*

\textbf{ABSTRACT}

\textit{Psoralea corylifolia} is an endangered and traditionally important medicinal plant of the family Fabaceae. It is used worldwide for the treatment of several ailments due to presence of various bioactive constituents that are mainly concentrated in seeds and fruits of plant. This review is an attempt to summarize the various pharmaceutical activities possessed by \textit{P. corylifolia} and the effect of several abiotic stresses or elicitors on the bioactive constituents of the plant.

\textbf{Keywords:} \textit{Psoralea corylifolia}, Pharmaceutical activities, Abiotic elicitors, Psoralen, Bakuchiol

\textbf{INTRODUCTION}

According to World Health Organization (WHO) approximately 80 percent of world’s population depends on plant-based products for their primary health care (Uijeit et al., 2010). The use of medicinal plants has increased day by day throughout the world with the pressing demand for herbal drugs, natural health products and secondary metabolites of medicinal plants (Cole et al., 2007). \textit{Psoralea corylifolia} is an endangered medicinally important plant of the family Fabaceae. It is commonly called as bakuchi, babchi, bavachi, Bu Ku Zhi, Ku Tzu, buguzhi (Khusboo et al., 2010). The name \textit{Psoralea} is taken from the Greek term \textit{psoraloe}s, that means “affected with the itch or with leprosy” (Zhang et al., 2016). It is widely distributed in the tropical and subtropical region of the world. It is distributed throughout India in Himalayan region, Dehra Dun, Bundelkhand, Bengal, Bombay, Karnataka, semi-arid region of Rajasthan, Punjab, Uttar Pradesh and Madhya Pradesh (Sharma et al., 2001; Sah et al., 2006). It is an erect annual herb, grows up to the height of 30-180 cm and found as a common weed. The leaves are petiolate, stipulate, simple, broadly elliptic to rounded, serrate, mucronate at the apex, gland dotted covered with several small white hairs at both the surfaces, and five main nerves arise from the base of leaves (Khusboo et al., 2010). Stem are grooved and covered with small white hairs. Inflorescence is an axillary racemose, raceme having 30-40 small, purple white and papilionaceous flowers. Flowering generally occurs in the winter season. The fruits are indehiscent, one seeded pod, and usually the pericarp is oily, sticky, and adhered to the seeds. They are kidney-shaped and slightly pointed at posterior end (Shrestha et al., 2018), 2-4 mm long, 2-3 mm broad and 1-1.5 mm thick, chocolate brown to black color, and the seed coats are very hard (Datta and Das, 1970). Plants take 6-7 months in maturation. Fig. 1 shows the morphology of leaves, flowers and seeds of \textit{P. corylifolia}. It has numerous uses as it is an important component of the allopathic and traditional system of medicines in various part of the world. It is also widely used in traditional Chinese medicine and traditional system of medicine in India such as Ayurveda, Siddha, Unani for the cure of psoriasis, leucoderma, and vitiligo (Khusboo et al., 2010). \textit{P. corylifolia} is also known as ‘Kusthanashini’ or leprosy destroyer because of its ability to cure leprosy (Khusboo et al., 2010). The entire plant especially seeds, fruits and the volatile oil obtained from seeds are significantly used in the treatment of various diseases due to presence of high content of bioactive compounds. There are several bioactive constituents obtained from \textit{P. corylifolia}, for example, psoralen, isopsoralen, bakuchiol, bakuchicin, bavachin, bavachinin, bavachalcone, isobavachalcone, daidzein genistein which belongs to various classes of secondary metabolites such as coumarins, furanocoumarins, meroterpenes, flavonoids, benzofurans, volatile oils and others (Zhang et al., 2016; Alam et al., 2018).

A wide range of abiotic stresses / elicitors have been found to alter the production of bioactive constituents by changing the

\textbf{Fig. 1: Morphology of leaves, flowers and seeds of \textit{Psoralea corylifolia}.}
aspects of secondary metabolism (Verpoorte et al., 2002). Various abiotic stresses or elicitors have been used for enhancement of secondary metabolite production in plant cells and suspension cultures (Hari et al., 2018). Linear furanocoumarins are found to be affected by changes in the environment and can be enhanced by the various environmental stresses (Derckx et al., 1996). It has been demonstrated that gamma radiation enhances the concentration of psoralen, a major furanocoumarin found in P. corylifolia (Jan et al., 2012). There are several literatures demonstrating the effect of various abiotic stresses and elicitors on the pharmacologically important secondary metabolites of P. corylifolia. In these regards present review focuses on the important bioactive constituents and pharmaceutical activities of P. corylifolia and also summarizes the effects of various abiotic stresses or elicitors on bioactive constituents of P. corylifolia.

Pharmaceutical activities

P. corylifolia has been used since a long time in traditional system of medicine for various purposes. It possesses several bioactive constituents that are mainly concentrated in the seeds and fruits. These bioactive constituents are extracted, and characterized by several researchers and possess various pharmaceutical activities which are discussed in the following sections:

Skin conditions

Phytoconstituents obtained from *P. corylifolia* possesses the abilities to treat various skin ailments such as psoriasis, vitiligo, leucoderma, eczemas. The antipsoriatic activity of ethanolic seeds extract of *P. corylifolia* was evaluated with the help of mouse tail models. Seeds extract showed an antipsoriatic activity of 75.8%, as compared to standard tazarot gel activity of 87.9%. Seeds extract converted the parakeratosis (keratinization) stage, which was the most important hallmark of psoriasis to the orthokeratosis (formation of anuclear keratin layer) stage of cell and thus confirmed its antipsoriatic activity (Dwarampudi et al., 2012). Extract of *P. corylifolia* seeds in hexane was formulated into a cream using the stearic acid as a base, and utilized for the treatment of patients suffering from eczema in a clinical trial for a month. The parameters studied were exudation rate, length of the lesion, and rate of itching. The symptoms score decreased after two weeks of the application of the cream. The study concluded that *P. corylifolia* could be potentially used for the treatment of eczema (Beena et al., 2010). For the assessment of antipsoriatic activity and oxidative stress biomarkers properties, the effectiveness of babchi essential oil loaded nanocarrier gel was evaluated with the help of mouse tail models (Kumar et al., 2019).

Antimicrobial activity

The phytoconstituents psoralen, angelicin, bakuchin and psoralidin obtained from the seeds were found to show antibacterial activity against gram-positive and gram-negative bacteria and among them mixtures of psoralen and angelicin showed stronger activity against gram-positive bacteria *Staphylococcus aureus* whereas psoralidin showed stronger activity against gram-negative bacteria *S. flexneri* and *S. sonnei* (Khatume et al., 2004). Monoterpenes such as *Psoracorylifols* (A-E) which were isolated from the seeds, possess inhibitory activity towards two strains (SS1 and ATCC 43504) of *Hellobacter pylori* (Yin et al., 2006). Purkayastha and Dahiya (2012) reported that babchi essential oil possesses antibacterial activity against multidrug-resistant bacterial strain. The problem of the development of multidrug resistance in pathogenic bacteria can be resolved by targeting the quorum sensing controlled virulence and biofilm formation in these bacteria. Husain et al. (2018) reported that methanolic fraction of *P. corylifolia* and its constituent bakuchiol reduced the quorum sensing regulated virulence and biofilm formation in *Chromobacterium violaceum*, *Pseudomonas aeruginosa*, *Serratia marcescens* and *Aeromonas hydrophila*. Methanolic seeds extract of *P. corylifolia* depict significant antifungal activity against dermatophytes *Trichophyton mentagrophytes*, *T. rubrum*, *Epidermophyton floccosum*, *Microsporum gypseum* which might be due to the presence of active metabolite 4-methoxy flavones (Prasad et al., 2004). Phenyl derivative of pyranocoumarin (PDP) extracted from petroleum ether extract of *P. corylifolia* showed potent antifungal activity against *Fusarium* species. Srinivasan and Sarada (2012) reported that acetylation of the C3 hydroxy group of trichothecene mycotoxin by the trichothecene 3-O-acetyltransferase enzyme was responsible for the self defense mechanism of *Fusarium* species. PDP strongly binds with trichothecene 3-O-acetyltransferase and prevents the acetylation of C3 hydroxyl group of trichothecene resulted in the destruction of self-defense mechanism of *Fusarium* species.

In addition, babachin isolated from *P. corylifolia* showed antiviral activity and was found to be highly effective against virus viraemia of carp virus (SVCV), which is an important pathogen of cyprinids. Babachin inhibited the early event of SVCV replication via blocking SVCV induced apoptosis and cellular morphological damage (Cheng et al., 2018). In a study, Shoji et al. (2015) observed the anti-influenza viral activity of bakuchiol by using Madin-Darby canine kidney cell and found that bakuchiol inhibited the viral infection and growth and decreased the expression of mRNA and protein in these cells.

Anti-inflammatory activity

Psoralidin obtained from the seeds inhibited the cyclooxygenases-2 (COX-2) and 5-lipoxygenase (5-LOX) pathway, and suppressed the ionizing radiation (IR)-induced expression of pro-inflammatory cytokines and ICAM-1 in human normal lung fibroblasts and mice (Yang et al., 2011). Phyto-constituents namely, bakuchiol, neobavaisoflavone, corilin, corilifoil A, babachin, babachinin and isobavachalcone isolated from methanolic seed extract of *P. corylifolia* exhibited an inhibitory effect on IL-6-induced STAT3 promotor activation and phosphorylation in Hep3B cells (Lee et al., 2012). In a study carried out by Chen et al. (2017), twelve phytoconstituents such as 7-O-methylcorilifoil A, 7-O-isoprenylneobavaisoflavone, 7-O-isoprenylcorilifoil A, psoralen, isopsoralen, psoralidin, bakuchiol, 12,13-dihydro-12,13-epoxybakuchiol, p-hydroxybenzaldehyde, babachalcone, mixture of b-sitosterol and stigmasterol were isolated from the fruits of *P. corylifolia*, and among them psoralen and 7-O-isoprenylcorilifoil A were found to be most effective against the fMLP-induced superoxide anion generation and elastase release whereas bakuchiol, 12,13-dihydro-12,13-epoxybakuchiol, 7-O-isoprenylcorilifoil A and psoralidin were most potent against LPS-induced NO generation. Hung et al. (2017) suggested that corilin, an isoflavonoid obtained from *P. corylifolia*, showed the anti-inflammatory properties and could be used as immunosuppressive drug for the cure of sepsis and septic shock.

Estrogenic activity

The estrogen receptor (ER) subtype-selective activities of the seeds extract of *P. corylifolia* and the compounds extracted from it were analyzed by Xin et al. (2010) using HeLa cells. The two furanocoumarins, psoralen and isopsoralen selectively activated
Effects of Various Abiotic Stresses on Bioactive Constituents of Psoralea corylifolia

ER-α while others such as bavachin, neobavaisoflavone, corylifol A, isobavachalcone and bakuchiol activated both the ER-α and ER-β receptors (Xin et al., 2010). Various in vitro assays were performed by Lim et al. (2011) using P. corylifolia and reported that ethanolic seeds extract and its hexane fraction had most estrogenic activity and the constituent bakuchiol showed the highest estrogenic activity and ER binding affinity. In another study, Liu et al. (2014) observed that psoraladin obtained from ethyl acetate fraction of P. corylifolia could be a novel ER modulator and used as a promising candidate in alternative hormonal replacement therapies.

Neurodegenerative disorders
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is characterized by intraneuronal fibrillar meshwork and extracellular amyloid plaques in the brain. Amyloid β (Aβ) peptides abnormally accumulated and are believed to be accountable for the formation of amyloid plaque (Chen et al., 2013). Isobavachalcone and bavachinin obtained from P. corylifolia were found to reduce Aβ42-induced toxicity. Bavachinin inhibits fibrillarization whereas isobavachalcone significantly inhibits both oligomerization and fibrillarization of Aβ42 peptides in an SH-SY5Y cell model (Chen et al., 2013). The total prenyllavonoids obtained from the fruits of P. corylifolia inhibited the Aβ-42 peptides production, GSK-3β overactivation, hyperphosphorylation, proinflammatory cytokines production and oxidative stress and found to be a potential drug for the prevention of Alzheimer’s disease in SAMP8 mouse model (Chen et al., 2018). Psoralen obtained from seeds inhibited the acetylcholinesterase (AChE) enzyme activity which leads to the inhibition of acetylcholine breakdown and helps in reduction of amyloid-beta (Aβ) peptides aggregation (Somani et al., 2015). In a study, Kim et al. (2016b) obtained seven components psoralen, angelicin, bavachinin, psoraldin, neobavaisoflavone, isobavachalcone, and bakuchiol from the ethanolic seeds extract of P. corylifolia, and among them bakuchiol was found to be most potent for the treatment of neurodegenerative disorders based on quantification and bio-efficacy analysis in hippocampal cell line HT22 and microglia cell line BV-2. In addition, Parkinson’s disease is another neurodegenerative disorder in which microglia-mediated inflammatory responses perform an important role. MPTP (1-methyl-4-phenyl-1, 2, 3, 6- tetrahydropyridine) induced Parkinson’s disease attenuated by the isobavachalcone isolated from P. corylifolia, which inhibited the activation of microglia through NF-κB Pathway in mice (Jing et al., 2017).

Neuroprotective
P. corylifolia seeds extract found to have a protective effect on palmitate-induced lipotoxicity in a neuron-like cell line, PC12 cells. It significantly attenuates palmitate-induced reactive oxygen species (ROS) generation and upregulated the mRNA expression levels of antioxidant genes. In addition, P. corylifolia seeds extract increased the cell viability and exhibited anti-apoptotic effects in palmitate-induced PC12 cells (Lee et al., 2016). It was believed that apoptosis caused by increased ROS generation performs a crucial role in pathogenesis of glaucoma (Kim et al., 2013). Bakuchiol obtained from P. corylifolia reduced the ROS mediated increase in apoptotic protein and has the neuroprotective effects on oxidative stress-induced retinal cell damage and might be considered as useful candidate in retinal diseases such as glaucoma (Kim et al., 2013). In another study, isobavachalcone was found to alleviate the neuronal injury in inflammation related brain diseases and this amelioration was carried out via inhibition of the lipopolysaccharide induced intercellular adhesion molecule-1 (ICAM-1) expression and leukocyte adhesion to brain endothelial cell through the blockage of toll-like receptor 4 (TLR4) signaling (Lee et al., 2015).

Anticancer activity
Apoptosis is one of the important mechanisms which were employed by several chemoprotective and antitumor drugs to exert their anticancer properties. Bakuchiol when applied in different concentration to human gastric cancer cell line NUGC3 in MTT cell viability assay, inhibited the cancer cell viability in concentration dependent manner. Further, bakuchiol treatment induced the caspase dependent apoptosis which involve PI3K/AKT and MAPK triggered signaling pathways (Lv and Liu, 2017). Li et al. (2016) suggested that bakuchiol possess both in vitro and in vivo estrogenic activity as well as anti-breast cancer activity and showed stronger anti-proliferative effects in breast cancer cells and induced intrinsic mitochondrial apoptotic pathway therefore bakuchiol might be used as a promising anti breast cancer drug (Li et al., 2016). In addition, bakuchiol enhances the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced apoptosis via upregulation of TRAIL death receptors DR4 and DR5 and downregulation of survival protein through ROS/JNK mediated signaling pathway in colon cancer cell (Park et al., 2016). Psoralen and isopsonal obtained from methanolic extract of P. corylifolia inhibited the growth of KB, KBV200, K562, K562/ADM cancer cells line and showed anti-cancer effect in dose-dependent manner (Wang et al., 2011). Ren et al. (2016) revealed that psoraladin inhibited the proliferation and induced the DNA damage of MCF-7, MDA-MB-231 and A549 cell lines in concentration dependent manner. Psoraladin was also found to induce the protective autophagy and ROS generation in MCF-7 cells. In biological systems NADPH oxidases (NOXs) is one of the main sources of ROS and play an important role in cancer chemotherapy. Further, it was found that psoraladin mediated NOX4 dependent increase in ROS formation contributed to the DNA damage and autophagy in MCF-7 cells (Ren et al., 2016). Table 1 summarizes the various bioactive constituents present in P. corylifolia and their pharmaceutical activities.

Effect of various abiotic stresses/eliciters on bioactive constituents of P. corylifolia
Salt stress was found to influence the psoralen content and maximum increase has been reported at 25 mM NaCl (Katere et al., 2012). Gamma radiation also stimulated the content of furanocoumarins and phenylalanine ammonia lyase (PAL) activity of the seeds of P. corylifolia, irradiated with different doses (2.5, 5, 10, 15, and 20 kGy) in two successive generations G1 and G2 (Jan et al., 2012). Further, Jan et al. (2012) reported that concentration of psoralen and isopsoralen increased with increasing dose of gamma radiation. The content of psoralen and isopsonal increased by 44.8% and 29.6% respectively compared to control at 20 kGy dose of gamma radiation in G1 generation plants. GC–MS analysis of essential oil and volatile fraction of P. corylifolia seeds which were exposed to different doses of gamma radiation revealed that maximum oil content (1.6%) was found in seeds irradiated with 20 kGy gamma radiation as compared to control (0.9%). Plants raised from seeds exposed to 20 kGy dose showed the maximum increase in psoralen (49.3%), angelicin (26.4%), bakuchiol (54.1%), β-caryophyllene (39.8%), α-pinene (16.6%), camphene (149.4%), geranial (132.2%) germacrene D (33.6%) and tricyclene (48.3%) (Jan et al., 2012).
Effects of Various Abiotic Stresses on Bioactive Constituents of Psoralea corylifolia

Table 1: Bioactive constituents and pharmaceutical activities of P. corylifolia.

<table>
<thead>
<tr>
<th>Bioactive constituents</th>
<th>Chemical nature of bioactive constituents</th>
<th>Pharmaceutical activities</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psoralen</td>
<td>Furanocoumarin</td>
<td>Antibacterial, estrogenic, antidepressant, anti-inflammatory, anti-alzheimer’s, anti-tumor</td>
<td>Khatune et al., 2004; Xu et al., 2008; Xin et al., 2010; Wang et al., 2011; Chen et al., 2017</td>
</tr>
<tr>
<td>Isopsoralen</td>
<td>Furanocoumarin</td>
<td>Antibacterial, anti-inflammatory, antidepressant, estrogenic, anti-tumor</td>
<td>Kong et al., 2001; Khatune et al., 2004; Xin et al., 2010; Wang et al., 2011; Chen et al., 2017</td>
</tr>
<tr>
<td>Bakuchiol</td>
<td>Meroterpenes</td>
<td>Estrogenic, anticancer, neuroprotective, antibacterial, osteoblastic</td>
<td>Kim et al., 2008; Kim et al., 2013; Li et al., 2014; Lv and Liu, 2017; Husain et al., 2018</td>
</tr>
<tr>
<td>Bavachinin</td>
<td>Flavone</td>
<td>Anti-inflammatory, anti-alzheimer’s</td>
<td>Lee et al., 2012; Chen et al., 2013</td>
</tr>
<tr>
<td>Bavachin</td>
<td>Flavone</td>
<td>Osteoblastic, antiviral, anti-inflammatory, estrogenic</td>
<td>Wang et al., 2001; Xin et al., 2010; Lee et al., 2012; Cheng et al., 2018</td>
</tr>
<tr>
<td>Bakuchicin</td>
<td>Coumarin</td>
<td>Antibacterial, antitumor, hepatoprotective</td>
<td>Sun et al., 1998; Khatune et al., 2004; Kim et al., 2016a</td>
</tr>
<tr>
<td>Bavachalcone</td>
<td>Chalcone</td>
<td>Anticancer, CVS protective, anti-inflammatory</td>
<td>Shan et al., 2014; Dang et al., 2015</td>
</tr>
<tr>
<td>Isobavachalcone</td>
<td>Chalcone</td>
<td>Anti-inflammatory, antiparkinson, antialzheimer neuroprotective</td>
<td>Lee et al., 2012; Chen et al., 2013; Lee et al., 2015; Jing et al., 2017</td>
</tr>
<tr>
<td>Psoralidin</td>
<td>Coumarin</td>
<td>Estrogen receptor modulator, antidepressant, antitumor, anti-inflammatory</td>
<td>Chen et al., 2008; Yang et al., 2011; Liu et al., 2014; Ren et al., 2016</td>
</tr>
<tr>
<td>Daidzein</td>
<td>Isoflavone</td>
<td>Antioxidant, anti-diabetic, topoisomerase inhibitor</td>
<td>Sun et al., 2003; Shinde et al., 2010</td>
</tr>
<tr>
<td>Genistein</td>
<td>Isoflavone</td>
<td>Antidiabetic, anti-obesity, antioxidant</td>
<td>Shinde et al., 2010; Behloul and Wu, 2013</td>
</tr>
<tr>
<td>Corylvol</td>
<td>Isoflavone</td>
<td>Osteoblastic, anti-inflammatory</td>
<td>Wang et al., 2001; Lee et al., 2012</td>
</tr>
<tr>
<td>Corylvol A</td>
<td>Isoflavone</td>
<td>Estrogenic, anti-inflammatory</td>
<td>Xin et al., 2010; Lee et al., 2012</td>
</tr>
</tbody>
</table>

et al., 2015). In a study by Bhat et al. (2015), treatment with alkylating agent ethyl methane sulphonate (EMS) leads to hyper accumulation of linear furanocoumarin psoralen at pre and post flowering stages for the attenuation of stress generated by ROS and the maintenance of high antioxidant potential of cells. Higher psoralen content was noticed with increasing dose and age of the plant. Psoralen content was 146.5% and 93.2% at pre and post-flowering stages respectively at 1% EMS (Bhat et al., 2015). In contrast Ali et al. (2008) reported decreased psoralen content of seeds by 86.7% compared to control under SO2 stress condition. Cadmium as an abiotic elicitor leads to maximum phytoestrogenic isoflavone daidzein (1.74% dry weight) and genistein (0.23% dry weight) at the optimum 8 µM concentration and exposure time for 2 days in hairy root culture of P. corylifolia as compared to control (Satdive et al., 2014). Adventitious roots of P. corylifolia treated with methyl jasmonate and salicylic acid at dose of 30 and 150 µM L⁻¹, respectively were found to enhance the concentration of psoralen. Further, it was found that methyl jasmonate treated root samples showed better results (3.7 mg mL⁻¹ of psoralen) than salicylic acid (0.015 mg mL⁻¹) and control plants (0.56 mg mL⁻¹) (Siva et al., 2014). In another study, salicylic acid at 1 mM concentration in the cell suspension culture of P. corylifolia stimulated the maximum accumulation of genistein (0.41% dry weight) and daidzein (3.4% dry weight) after 2 days of elicitation (Shinde et al., 2009).

Conclusions

P. corylifolia possess various pharmaceutical properties such as antimicrobial, anti-inflammatory, estrogenic, neuroprotective, anticancer, osteogenic activity, helps in various skin and neurodegenerative disorders. It is the relevant source of several valuable drugs, therefore elicitation of these valuable bioactive metabolites with an appropriate dose and exposure time of various abiotic stress factors / elicitors, has applications in the over-production of desired low yielded and high valued compounds, and an area of pharmaceutical and commercial importance.

Acknowledgements

The authors are thankful to the Head, Department of Botany, Centre of Advanced Study, Banaras Hindu University, for providing library, computer and laboratory facilities and to University Grants Commission (UGC), New Delhi, for financial assistance in the form of Junior Research Fellowship to AP.

References

Shinde et al., 2014.}
Effects of Various Abiotic Stresses on Bioactive Constituents of Psoralea corylifolia

Effects of Various Abiotic Stresses on Bioactive Constituents of *Psoralea corylifolia*

