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Ab s t r Ac t
Bryophytes are one of the simplest autotrophic cryptogams invading land and characterized either by simple thalloid or erect habit 
lacking true leaves, root and stem within the plant body. Although they are ubiquitous in distribution, yet becomes sensitive to certain 
environmental conditions that can be natural or induced due to anthropogenic activity. Due to their versatile tolerance and resistance 
capability they can be categorically used as potential bioindicators for monitoring pollution. Bryophytes can be utilized as ‘environmental 
specimen bank’ due to their unique capacity of indicating the presence of metal and their concentration gradient in the substratum. Apart 
from their utility in pharmaceutical products, horticulture, household purposes they are also ecologically important. As multidimensional 
applications of the flora are being increasingly standardized universally, their potential in the biomapping of atmospheric pollution as 
well as ecological biodegradation is also enormous. Currently, a change in global climate is intensified that affected Earth’s biomes and 
vegetation zones redistribution. At higher altitudes, this alteration is more promising with rapid consequences. Elevated temperatures 
are expected to produce a drier environment that affect site water balance and cause shifts in the distribution of ecosystems on a 
universal scale. These effects are rather evident in such ecosystems as peatlands which are sensitive to both climate and water level 
fluctuations. Decrease in epiphytic bryophytes because of gaseous and particulate pollutants as well as the greenhouse gases is also a 
serious problem. Besides this, very specific and unique responses are generated by the bryophytes; studies have proven that they act 
as potential monitoring bio-agents for heavy metal pollution. In the present paper, an attempt is done to do a comprehensive study 
on bryophytes that reflects their role as promising indicators in monitoring pollution.
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In t r o d u c t I o n

Since the advent of civilization, the environment has received 
various types of pollutants in one form or the other. The first 

record of anthropogenic pollution may well be traced back 
with the discovery of fire by humans that initiated adding up 
of toxic oxides of carbon, nitrogen, sulphur in the atmosphere. 
Gradually as the civilization and time proceeded, earth was 
contaminated by a wide array of pollutants with anthropogenic 
wastes which were mostly non-biodegradable. Records of 
pollution can be very well documented from the industrial 
era where ambitious human activities have led to emission of 
greenhouse gases resulting in the change in climate (Perera, 
2018). However, pollution started well before the industrial era 
and it is documented there are a number of ancient civilizations 
which were largely responsible for build-up of anthropogenic 
pollution. Among various pollutants, heavy metal contamination 
is one of the earliest which is documented in historical  
records. 

Detection of lead and copper from the ice cores recovered 
from Greenland indicates that their concentration was greater 
2500 to 1700 years ago (500BC to 300AD). This is possibly due 
to lead and silver mining and smelting activities by ancient 
Greeks and Romans which were primarily used for weapons, 
artefacts and others. This eventually resulted in pollution of the 
troposphere of northern hemisphere and is probably the first 
record of this type due to anthropogenic activity. These metals 
consequently deposited in the ice sheets of Greenland (Hong 
et al., 1994; McConnel et al., 2018). In southern hemisphere, the 
earliest evidence of atmospheric metal emission was detected in 
sediment cores of lakes located downwind of major metallurgical 
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centers in Peru and Bolivia (Abbott et al., 2003; Cooke et al., 2007; 
Cooke et al., 2009). Contamination of South America by metals 
began as early as 1800BC in Peru and Bolivia and also in the 
Inca Empire between 15th and 16th century which resulted in 
dissemination of metal pollutants across the Andes (Lechtman, 
1980; Brown, 2012). Later on, the Spanish conquistadors added 
more pollution in the subcontinent through mining of silver and 
associated use of mercury amalgam (Robins and Hagan, 2012). 
Europe also has a long history of metal pollution starting from 
the Bronze Age to the modern times. The industrial revolution 
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acted as a catalyst in the European continent and added a thrust 
to the metal pollution (Longman et al., 2018). 

Presently rapid progress of industrialization accompanied 
by emission from automobiles has been adding up metals 
in the environment. This has resulted in a number of heavy 
metal related ecological disasters and harmful human diseases 
amongst which the Minamata disease tops the list (Harada, 1995).  
Thus, monitoring of heavy metal contamination is of extreme 
relevance to the present day society. Biological entities have 
so far being proven as a suitable candidate for monitoring 
heavy metal pollution. This is because most of the metals are 
toxic to the organisms and bring about marked changes at 
morphological, physiological as well as genetic level, which can 
be very well observed and documented. Among the biological 
organisms, plants have proven to be very handy in monitoring 
and detecting heavy metals and this is due to their capability of 
absorbence of heavy metals within their body (Azab and Hegazy, 
2020; Cooper et al., 2020). 

Among the plants, bryophytes were the first to inhabit and 
colonize the land surface (Kenrick et al., 2012). At present they 
are cosmopolitan in distribution and dwells in different habitats 
with different growth forms ranging from mats, cushions, 
pendents, turfs to dendroid forms. This group of plants prefer 
to grow in moist and shady places where water is an essential 
constituent for successful fertilisation; hence they are aptly 
termed as the ‘amphibian group’. They lack true leaves, roots 
and vascular systems. The simple body consists of rhizioids 
which perform the absorption from soil as well as anchorage 
to them. Bryophytes are widespread in distribution and absorb 
the water and minerals directly from the whole plant surface 
thus many of the unwanted substances are also taken into the 
plant and making them to be good accumulator of heavy metals 
and thus qualify as an ideal heavy metal biomonitoring system 
(Tremper et al., 2004). 

Bryophytes also have the potential to grow on substrate 
containing specific metals and thus can be used as bioindicators 
of specific metals. Moreover, the simple make up of these plants 
make them suitable candidates to study morphological and 
genetic changes which takes place due to metal toxicity or 
stress (Stanković et al., 2018). The ability of bryophytes to retain 
potentially toxic element has led to their use as an indicator of 
air pollution (Rühling and Tyler, 2004). Bryophytes consist of both 
sensitive and tolerant species and respond to pollution in either 
of the following ways. Firstly, many of them are highly sensitive 
to even a slight alteration in pollutant level at the surrounding 
and it’s manifested in form of visible symptoms of injury in 
the protonema and thalli. They serve as an excellent indicator 
of pollution or contamination. Secondly, the other group has 
the capacity to absorb and retain pollutants in quantities 
much higher than their immediate neighbouring plants; they 
entrap and prevent the recycling of the metal pollutants in the 
environment (Govindapyari et al., 2010). This paper is an attempt 
to review the role and use of bryophyte as an effective tool to 
monitor metal pollution in the environment.

so u r c e s o f He Av y Me tA l s

At present industrial and anthropogenic activities are the 
major sources of heavy metal pollution on the earth. During 

last hundred years, industrialization has increased at a rapid 
rate and thus demands for increased exploitation of natural 
resources of Earth. This is accompanied by careless and 
unplanned management of earth’s natural resources which 
have led to the pollution in various spheres of the atmosphere 
(Briffa et al., 2020). Presently, our environment is thus polluted 
by a number of pollutants such as heavy metals, inorganic ions, 
organic compounds, radioactive isotopes, gaseous pollutants 
and nanoparticles (Walker et al., 2012). 

In this section various sources of heavy metal pollution 
would be discussed in brief. Heavy metals may be defined as 
those metals which have a high atomic weight and a density 
at least 5 times than that of water (Tchounwou et al., 2012). At 
present, there is an increasing ecological and global public 
health concern related to environmental pollution by these 
heavy metals. In addition to it, exposure of humans has also 
increased due to indiscriminate use of these heavy metals in 
industry, agriculture and domestic spheres (Bradl, 2005). Heavy 
metals are grossly emitted from solid fuel combustion, vehicular 
emissions and in industrial processes. Table 1 represents sources 
of selected heavy metal contamination in the environment.

Me r I ts o f bI o-Ag e n t Ag A I n s t ot H e r 
Ag e n ts 
Use of bioindicators utilize the biota to evaluate the cumulative 
impacts of both chemical pollutants and habitat alterations over 
time, in comparison to the traditionally conducted chemical 
assays and directly measured physical parameters of the 
environment (e.g., ambient temperature, salinity, nutrients, 
pollutants, available light and gas levels). Moreover, the use of 
bioindicators is fundamentally different from classic measures 
of environmental quality and offers several merits: (i) Firstly, they 
add a temporal component corresponding to the life span or 
residence time of an organism in a particular system, allowing the 
integration of current, past, or future environmental conditions. 
In contrast, many chemical and physical measurements only 
characterize conditions at the time of sampling, increasing the 
probability of missing sporadic pulses of pollutants. (ii) Secondly, 
they possess the ability to indicate or determine indirect 
biotic effects of pollutants that other physical or chemical 
measurements cannot. (iii) And thirdly, bioindicator signal is 
masked by an excessive number of divergent species’ responses 
(e.g., some species may increase while others decrease) where 
they integrate all direct and indirect effects that focus only on 
subset of the biota or single species which is biologically relevant 
and cost-effective (Holt and Miller, 2011).

us e o f bryo p Hy t e sys t e M A s bI o I n d I c Ato r s

Plants are widely used as bioindicators for their peculiar and 
distinct responses, in which bryophytes play a very crucial and 
specific role due to extreme sensitivity of several bryophytes 
to pollutants in the immediate substratum. They exhibit visible 
injury symptoms even in the presence of very minute traces of 
pollutants. Such species serve as good bioindicators and act as 
a “warning giver” to the environment. Bryophytes also possess 
the capacity to absorb and retain pollutants in concentrations 
much higher than those absorbed and retained by the higher 
plants growing in the same habitat (Jiang et al., 2018). 
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their nutritional requirements by absorbing them from the soil 
through their developed root system (Dinneny, 2019) and their 
foliar systems also help in the uptake of gases (e.g. NO2, NH  3 

Uptake mechanisms of elements in vascular plants and 
bryophytes are vastly different and this also makes a visible 
difference. It is observed that vascular plants mainly meet 

Table 1: Heavy metals and their potential sources of contamination

Metal Symbol Source Reference

Cadmium Cd Smelting industry Liu, 2003

Fertilizer Dharma-Wardana, 2018

Sewage sludge Agoro et al., 2020

Chromium Cr Smelting industry Deakin et al., 2001

Cement production Isikli et al., 2003

Waste incineration Astrup et al., 2005

Chromite mining industry Dhakate et al., 2008

Coal combustion López-Antón et al., 2008

Oil combustion Cheng et al., 2014

Iron and steel production Järvelä et al., 2016

Leather industry Andleeb et al., 2019

Copper Cu Smelting Klumpp et al., 2003

Industrial effluents Singh and Chandel, 2006

Mining Pandey et al., 2007

Electronic equipment processing Gu et al., 2017

Iron Fe Mining Kessarkar et al., 2015

Smelting Hu et al., 2019

Lead Pb Metallurgy Ettler et al., 2004

Lead paint Clark et al., 2005; Lin et al., 2009

Mining Nikolaidis et al., 2010

Electronic waste Yang et al., 2013

Traditional medicines Mikulski et al., 2017

Battery manufacture Gottesfeld et al., 2018

Manganese Mn Combustion of gasoline Zayed et al., 1999

Fungicides Costa-Silva et al., 2018

Mercury Hg Chlor-alkali industry Gibicar et al., 2009

Oil refining Urgun-Demirtas et al., 2013

Non-ferrous metals production Wu et al., 2016

Artisanal and small-scale gold mining Esdaile and Chalker, 2018

Dental amalgam Tibau and Grube, 2019

Cement production Chen et al., 2020

Nickel Ni Industrial waste Krishna and Govil, 2007

Municipal Solid waste burning Van Praagh and Persson, 2008

Household fuel burning Matawle et al., 2017

Uranium U Phosphate fertilization Rufyikiri et al., 2006

Gold mining Mandeng et al., 2019

Zinc Zn Municipal solid waste incineration Struis et al., 2004

Mining Jabłońska-Czapla et al., 2016

  Coal combustion Li et al., 2017
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and SO2) from the atmosphere (Antunes et al., 2012), whereas 
bryophytes obtain their nutrition by absorbing the substances 
dissolved in air moisture from their general surface (Vats et al., 
2010). These properties give them an edge over other vascular 
plants as a suitable candidate to monitor pollution. The high 
accumulation capacity of bryophytes for pollutants has led to 
their use for heavy metal monitoring. 

Two categories of bryophytes are categorised according 
their response to pollution (Govindpyari et al., 2010). The first one 
are very sensitive to pollution illustrate observable symptoms of 
injury even in the presence of minute traces of pollutants and 
serve as good indicators of the degree of pollution and also of 
the nature of pollutant. The second group absorb and retain 
pollutants in quantities much higher than those absorbed by 
other plant groups growing in the similar habitat. These plants 
trap and prevent recycling of such pollutants in the ecosystem 
for different periods of time. Analysis of such plants gives us 
a fair idea about the degree of metal pollution in the vicinity. 

Metal analysis has thus become a frequently used and 
dependable yardstick in the evaluation of the environmental 
quality of a given site (Tchounwou et al., 2012). The method was 
first used by Rűhling and Tyler (1968) to analyse lead in mosses 
to monitor roadside pollution in Sweden. Analysis of Pb, Cu, Zn, 
Ni, Cr and Cd of some mosses was done from the herbarium 
specimens collected during 1905-1971 from Mount Royal in 
Montreal, Canada. Significant increase in Zn concentration in 
all the mosses selected was observed in the study (Rao, 1982). 
A study on bio-monitoring of heavy metals due to vehicular 
pollution with the help of Sphagnum is well reported (Saxena, 
2001). Bryophytes from various regions in India are studied to 
understand their tolerance potential for different pollutants 
(Chopra and Kumra, 2005, Govindapyari et al., 2010).

Hence, it is revealed that bryophytes are efficient accumulator 
of heavy metals because of their unique properties like 
absence of cuticle layer and true root system thereby meet the 
requirement of minerals through atmospheric deposition by 
easily permeating to water and minerals, including the gaseous 
pollutants and heavy metal ions; negatively charged groups 
present on tissues also act as efficient cation exchangers, even 
the dead tissues possess competence to bind ions because cell 
walls possess high cation exchange capacity. Bryophytes usually 
acquire mineral nutrition from wet and dry deposition of particles 
and soluble salts. Nonetheless, some bryophytes absorb metals 
from substrate with rising capillary water, making them less 
suitable for the monitoring of heavy metals (Sahu et al., 2007).

Consequently, this group of plants added new vistas to study 
the level of different types of pollution, mainly the one caused 
by metals. Therefore, the cosmopolitan distribution of moss 
species in community, measurement of their growth rates and 
concentration of contaminants in them are reliable aspects in 
biomonitoring technology (Vats et al., 2010). Moreover, different 
approaches have been revealed to indicate that bryophytes 
have been used as prominent pollution indicators, which can 
be categorized as:

As Potential Air Pollution Indicators: 
Despite lacking cuticular layer, proper rooting system they 
absorb heavy metals directly from the atmosphere through 

dry and wet atmospheric deposition over their entire surface 
(Liggett et al., 2015). They are sensitive indicators in the 
immediate environmental conditions. Air pollution can create 
moss-deserts and force many sensitive species to retreat. 
From long time back, bryophytes are assessed to determine 
the impact of environmental pollution in Japan (Taoda, 1972), 
Europe (Greven, 1992). One of the significant air pollutant to 
terrestrial and epiphytic bryophytes is considered to be SO2 
(Sulphur dioxide), that causes chlorophyll plasmolysis and 
severely affect the plant growth (Geebelen and Hoffman, 2001; 
Govindapyari et al., 2010). Bryophytes have been frequently used 
to monitor air pollution by analyzing the atmospheric heavy 
metal deposition within their thallus or plant body. 

As Potential Water Pollution Indicators:
It is a well-documented fact that the heavy metal pollution has 
increased dramatically since the days of industrial revolution 
(Wu et al., 2014). These metals contaminate not only the land 
but also the aquatic ecosystem thereby posing threat to the 
aquatic life. The principal advantage is their adaptability to 
assimilate pollution over time and maintain a record that cannot 
be obtained and retain their toxic load long after death due to 
their slow decaying process (Onianwa, 2001). Reports supported 
that among Fontinalis sp, Leptodictyum riparium, Platyhypnidium 
riparioides and Scapania undulate, the later one survived at the 
low pH of 3.9 and it is a very useful accumulator for zinc, lead, and 
cadmium (Shacklette, 1984) in nutrient-poor water. One report 
states that Fontinalis antipyretica when transplanted in polluted 
water accumulated more heavy metals namely Al, Cr, Cu, Pb, V, 
and Zn than the native bryophytes (Samecka-Cymerman et al., 
2005). In another study it was reported that Fontinalis antipyretica 
and F. dalecarlica possess the capacity to absorb cadmium ion 
in laboratory condition making both the species suitable for 
biomonitoring of cadmium (Bleuel et al., 2005). It has also been 
reported from a recent study that Leptodictyum riparium has the 
capacity to absorb Cd, Cr, Cu, Fe, Ni, Pb and Zn. It was further 
observed that the plants responded to heavy metal stress by 
generating reactive oxygen species. This was accompanied by 
changes in cellular levels and alterations in expression levels 
of heat shock protein 70; indicating Lepidodictyum riparium is 
a suitable candidate to monitor heavy metals in water bodies 
(Esposito et al., 2018). Another interesting study reports the 
accumulation of rare earth elements namely Nd, Gd, Ho, Er, Tm, 
Lu, La, Ce, Sm, Eu, Tb and Dy by four aquatic mosses namely 
Fontinalis squamosa, Brachythecium rivulare, Platyhypnidium 
riparioides and Thamnobryum alopecurum. This study indicates 
that aquatic bryophytes can be exploited as a promising 
candidate in monitoring rare Earth elements in water (Pratas 
et al., 2017). The use of Platyhypnidium aquaticum to monitor 
metal and metalloid contamination of Zamora River in the city 
of Loja, Peru, south America (Benítez et al., 2020). Accumulation 
of different materials differs in different parts of moss plants. 
Mercury sulphide (HgS) crystals in the cell walls of the aquatic 
bryophytes, Jungermannia vulcaniania Steph. Scapania undulate 
is very well illustrated (Satake et al., 1990). Several elemental 
traces such as aluminum, manganese, copper, zinc, and lead 
in higher concentrations are observed, 1-3 cm below growing 
stem tips than at tips of Pohlia ludwigii, but sodium, phosphorus, 
calcium, and iron differed little between the 1 cm tip portion 
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and lower parts (Soma et al., 1988). The higher concentration 
of some minerals in older parts may be due to coatings of iron 
and manganese oxides on leaves and stems, thus increasing 
adsorption of other metals (Robinson, 1981) to greater exposure 
time of older leaves, or to greater permeability of older leaves, 
providing access to interior cell-wall binding sites. Other 
differences may relate to the ability to transport materials from 
one part of the plant to another, particularly in Sphagnum and 
in other upright, emergent mosses (Clymo, 1963).

As Potential Mineral Deposition Indicators
The Earth’s crust is treasure of minerals of all the elements. 
Due to their unique body pattern and physiology, they easily 
uptake minerals from the environment and thus can be very 
well regarded as an indicator species. More appropriately, 
bryophytes are considered as bioindicators as their presence or 
absence in a specific area also corresponds with the occurrence 
of specific minerals or elements in the soil. As for example, 
some bryophytes act as indicators of metallic enrichments 
with copper in particular (Bačkor et al., 2009; Sun et al., 2009). 
A few mosses particularly grow on copper rich substrate, are 
often termed as copper mosses. Scopelophila cataractae is one 
such copper moss and the copper concentration in the shoots 

has been reported to attain a level of as high as 1-3% (Satake 
et al., 1988). It was also reported that two fifths of the copper 
is bound to homogalacturonan of the cell wall pectin (Konno 
et al., 2010). Another study revealed that Physcomitrella patens 
have the capability to grow in high copper levels (up to 100 
mM Cu-EDTA) indicating that the moss is able to tolerate high 
concentration of copper (Sassmann et al., 2010). The growth 
pattern of Brachythecium rutabulum closely relates to copper 
deposits in copper smelter region of Legnica in southwest 
Poland (Samecka-Cymerman et al., 2009). Apart from this, 
several bryophytes were found to absorb certain metals within 
them. Such as, Haplocladium angustifolium reported from 
China indicates absorption of many metals within itself (Table 
2). Different bryophytes studied from various regions of world 
has been tabulated in Table 2 that shows that bryophytes are 
really very good indicators.

Methods for Monitoring Pollution Indices
There are different methods for studying the effects of pollution 
with the help of bryophytes. To define these indices, several 
parameters are noted including search for different bryophyte 
communities, respective cover areas and determination of their 
absorbance capacity mentioned as follows-

Table 2: Study of metal deposition within bryophytes of specific areas

Study Area Family Plant Species Metals detected References

Chongqing, China Lepidoziaceae  Bazzania yoshinagana Hg, Cu, Pb, Zn, Ni Sun et al., 2009

Wuxi, China Sphagnaceae Sphagnum junghuhnianum Cr, Pb, V, and Zn Hu et al., 2018

Wuhan city, China Leskeaceae Haplocladium angustifolium As,Cd,Co, Cr, Cu, Mn, Ni, Pb, V, Zn Jiang et al., 2020

Taizhou, China Leskeaceae Haplocladium microphyllum Cd, Cr, Cu, Hg,Ni, Pb, Zn Zhou et al., 2017

Marmara region, Turkey Hypnaceae Hypnum cupressiforme Pb, Cu, Cd, and Zn Coskun et al., 2011

Mekrijarvi and 
Hameenkangas, Finland

Mniaceae Pohlia nutans Fe, Zn, Mn, Cu, Ni, Cd, Pb, Al Salemaa et al., 2004

Dicranaceae Dicranum sp.

Polytrichaceae Polytrichum juniperinum

Kosovo Brachytheciaceae Hypnum cupressiforme Cr, Ni, Pb, and Zn Maxhuni et al., 2016

Hypnaceae Pseudocleropodium purum

Albania Hypnaceae Hypnum cupressiforme As, Cd, Hg, Pb, Cu, Zn, Ni, and Cr Qarri et al., 2019

Belgrade, Serbia Brachytheciaceae Brachythecium rutabulum V, Cr, Ni, As Anicić et al., 2007

Brachytheciaceae Brachythecium salebrosum

Brachytheciaceae Eurhynchium hians

Brachytheciaceae Eurhynchium striatum

Republic of Macedonia Brachytheciaceae Homolothecium lutescens Cd, Hg, Pb Barandovski et al., 
2012Hypnaceae Hypnum cupressiforme

Republic of Moldova Hypnaceae Hypnum cupressiforme Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Zinicovscaia et al., 
2017Orthodontiaceae Pleurocarpous sp

Poland (North-East) Hylocomiaceae Pleurozium schreberi Zn, Pb, Ni, Co, and Cd Radziemska et al., 
2019

Poland Hylocomiaceae Pleurozium schreberi Cd, Cr, Ni, Pb and Zn Zawadzki et al., 2016

Polytrichaceae Polytrichum commune

Poland (South West) Polytrichaceae Polytrichum commune Cd, Co, Cr, Cu, Mo, Ni, Pb and Rb Wojtuń et al., 2018

Polytrichaceae Polytrichastrum formosum

Toluca Valley, Mexico Fabroniaceae Fabriona ciliaris Zn , Pb, Cr, Cd Macedo-Miranda et 
al., 2016Leskeaceae Leskea angustata
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(A) Survey Method
An inclination of insufficiency regarding the abundance of 
the individuals or species is noted and studies revealed that 
the changes are directly related to the change in the level of 
pollutants. Surveying and comparison of various communities of 
specific cryptogams from different sites as well as comparing the 
present species occurrence and abundance with the past records 
indicate the quantity of pollutants or stress on the organisms of 
the site. Periodic surveys are made on the native bryophytes in 
diverse sites. The number, frequency and abundance of native 
species and dominance of the growth form can be compared 
with the past records, reports and periodic herbarium collection. 
Disappearance of previously reported species (sensitive) and 
emergence of novel species (tolerant) specified the stress 
conditions in the sites (Rao, 1982; Govindapyari et al., 2010) 
The method is quite competent to trace out several kinds of 
terrestrial bryophytes and their ability to indicate several levels 
of pollution.

(B) Transplantation
In this method, specific bryophyte species along with their 
substrate are transplanted in situ from non-polluted to 
ecologically more or less similar but polluted or industrial 
site to acquire the injury caused by the pollution (Rao, 1982; 
Govindapyari et al., 2010). Transplanted species illustrate 
the altered pattern of growth of shoots and branching and 
deposition of wax on the plant surface. General symptoms are 
chlorophyll degradation and plasmolysis in the leaf cells and 
consequently, the plants lose the ability to revive or regenerate. 
Three ways are generally opted to study as well as determine 
this particular procedure:
(i) Transplantation in the soil: In this study, bryophytes 

grown in small plots, prepared in the ground on selected 
sites of pollution and some plots of non-polluted site are 
established as control. Extent of branching of plant parts, 
production of basal regenerative shoots and rate of survival 
are recorded periodically which give fair picture of pollution 
stress (Govindapyari et al., 2010).

(ii) Moss Bag Methods: In this study, muslin cloth bags (20×20 
cm size) are prepared in which equal amounts of moss 
material preferably epiphytic mosses are filled. Further, these 
bags are hanged in different locations of the city. Periodic 
investigation of rate and capability of regeneration of these 
samples present the data on the trend of pollution. Aquatic 
mosses filled in the bags can be kept in the water bodies to 
analyze the extent of pollution in the water bodies.

(iii) Study with Bryometer: It is an instrument used for measuring 
the phytotoxic air pollution. In this method of study, an 
impoverished box in which bryophytes are grown in moist 
chamber with their original substrata is made. It is small, easy 
to handle and can be utilised throughout the year and termed 
as ‘Bryo-meter’ (Taoda, 1973). The box is with transparent 
sides made with thin glass with opening so that air and light 
can pass through the plants inside the box. The boxes are 
kept in different locations of the polluted area to observe 
the periodic growth and survival rate of the bryophytes, 
indicating the development of pollution at the site. Spore 
germinates pattern and protonemal growth are easy to 

observe in this moist chamber. Therefore, this method is very 
useful to study and monitor the pollution index.

(C) Phytosociological Method
These are typical changes that are directly related to the 
changes in the levels of air quality which show the Index of 
Atmospheric Purity (IAP). In this method, bryophytes growing on 
the tree bark are examined along a line or belt transect having 
pollution gradient (LeBlanc and DeSloover, 1970). Studies on 
the frequency and abundance of species through a number of 
transect radiating in all direction and with increasing distance 
from the source of pollution are recorded. IAP is determined on 
the basis of number, frequency coverage and resistance factor 
of species can provide a fair picture of the long range effect of 
pollution of a particular area concerned. Mathematically IAP is 
determined by the below mentioned formula:

 

Where n = total number of species per the sampling plot, Qi = 
ecological index, fi=combined index of the coverage and the 
frequency. Furthermore, a modified index of atmospheric purity 
(IAPm) (Kondratyuk, 1994) based on a quantitative assessment 
of abundance and species coverage can be used to analyze the 
earlier parameters.

Ecophysiological Method
Here, bryophytes are exposed to the previously known 
concentrations of pollutants like, fumigation of the live plants 
in the field or plants can be cultured in the medium of different 
concentrations of pollutant and heavy metals. Observation on 
the growth and survival rate, injury, chloroplast degradation, or 
other kind of unusual growth of the protonema and the mature 
plants indicate the toxicity of pollutants. This method is useful in 
determining toxicity level of pollutants and the tolerance levels 
of different species (Rao, 1982).

Chlorophyll Fluorescence
The practice of chlorophyll fluorescence has become universally 
acceptable in plant ecophysiological studies. The basic 
principle of chlorophyll fluorescence analysis is comparatively 
straightforward. Light energy absorbed by chlorophyll 
molecules in a leaf can experience following outcomes. It can 
be used to drive photosynthesis where excess energy can be 
dissipated as heat or it can be re‐emitted as light-chlorophyll 
fluorescence. These processes occur in such a manner that any 
increase in the efficiency of one will result in a decrease in the 
yield of the other two. Therefore, by measuring the yield of 
chlorophyll fluorescence, information about changes in the 
efficiency of photochemistry and heat dissipation can be gained. 
Moreover, bryophytes are sensitive to several abiotic stresses 
and is considered an environmental indicator. This measurement 
has been used as a probe to study, evaluate and compare the 
tolerance power of numerous bryophytes with heavy metal 
stress (Tuba et al., 2010; Chen et al., 2019). Scientists are working 
to understand the mechanism in more details that needs more 
experimentation.
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Practical Applications of Bryophytes to Monitor Heavy 
Metal Pollution
Transplants of bryophytes have been used in a number of studies 
to assess heavy metal deposition rates. Hypnum cupressiforme 
transplanted in industrial area in Wales died after sometime, but 
it continued to accumulate heavy metals after death (Sahu et al., 
2007). 25 moss samples to monitor the lead pollution in various 
parts of Chandigarh city are revealed (Sharma and Kapila, 2007).  
In Japan, bryophytes have been used as a bryometer to assess 
the air quality (Taoda, 1973). The classic method of monitoring 
pollution is through the use of moss bags. It is a common 
active biomonitoring technique using terrestrial mosses. This 
technique was first introduced by Goodman and Roberts (1971) 
involving exposure of moss within mesh bags in order to monitor 
the contaminants in air. In general inorganic contaminants 
are monitored through this technique (Ares et al., 2012). The 
moss bag technique is reliable and acceptable from financial 
point of view due to its low cost of material acquisition (Debén 
et al., 2018). The preparatory phase includes collecting moss 
from clean area, removing the impurities followed by proper 
rinsing with water, drying and then transferring them into the 
bags for monitoring pollution (Temple et al., 1981). Selection of 
moss shoot (old or young), different substrates and exposure 
to the atmosphere can also be considered because elemental 
deposition of moss on soil and rock dust is very different from 
ones grown on tree trunks (Adamo et al., 2011). In addition, 

low pH increases the metal availability due to competing with 
the sites of theses metal ions as the hydrogen ion has a higher 
affinity for negative charges on the colloids, thereby, releasing 
the metals (Uniyal and Singh, 2018).Characteristics of a good 
bioindicator can be summarised as broad distribution, long 
life cycle, sensitive to specific pollutants, inertness and genetic 
uniformity in the area (Cenci, 2008). Table 3 represents use of 
mass bags to monitor pollution in selected cities of the world. 
Monitoring of heavy metals through bryophytes is not only 
cost-effective, but it also provides efficient way to assess the 
qualitative and quantitative differences in metal concentrations 
at distinct locations and on local and landscape scales.

Mechanism of Accumulation Of Heavy Metals  
in Bryophytes
A number of mechanisms are involved in accumulation of heavy 
metals by bryophytes. One of the most common and primary 
process is the adsorption in the cell surface (González and 
Pokrovsky, 2014). The adsorbed metals are generally trapped 
as particulate matters within the cell surface. In this context 
the high surface to mass ratio of epigeic mosses is effective in 
entrapment of airborne particles (Bargagli et al., 2002). They 
may also be dissolved in liquids of body surface or deposited 
in surrounding cells as intercellular fractions. It is also bound as 
exchangeable forms at the chelating sites of cell wall and on the 
outer surface of plasma membrane as extracellular fractions or 

Table 3: List of bryophytes used as promising moss bags in specific sites to monitor pollution

Name of the moss Family Location Metals accumulated Reference

Brotherella sp. Pylaisiadelphaceae Chongqing, China Cu , Pb , Zn, Ni Sun et al., 2009

Dicranum nipponense Dicranaceae

Haplocladium microphyllum Leskeaceae Shanghai, China S, Cu, Pb, and Zn Cao et al., 2009

Hypnum plumaeforme Hypnaceae Laoyingshan, Guizhou, 
China

Cd Xie et al., 2014

Sphagnum sp Sphagnaceae Eskisehir Hasan Polatkan 
Airport (Eskisehir, Turkey)

Cr, Sn, Li,Ge, Ni. Cd, Ce, Cs, 
Cu, Fe, La, B ,Be, Gd, Al.

Turgut et al., 2019

Sphagnum girgensohnii Sphagnaceae Belgrade, Serbia V, Cu, As, and Ni. Anicić et al.,2009

Sphagnum papillosum Sphagnaceae Harjavalta Industrial Park 
in southwest Finland

As, Cd, Cu, Fe, Hg, Ni, Pb, 
Ti, Zn.

Salo et al., 2016

Sphagnum girgensohnii Sphagnaceae Nikola, Tesla International 
Airport, Belgrade

Zn, Na, Cr, V, Cu and Fe Vuković et al., 
2017

Pleurosium spp., Hylocomiaceae, Prešov city, Slovakia Cd, Pb, Zn, Cu, Cr, Ni, Co, 
Mn, Fe, Hg.

Lenka et al., 2017

Polytrichum spp., Polytrichaceae

Rhytidiadelphus spp. Hylocomiaceae

Rhynchostegium riparioides Brachytheciaceae Vicenza, NE Italy Pb and Cu (chronic 
contamination)

Cesa et al., 2006

 Cr, Zn and Ni (intermittent 
contamination)

Hypnum cupressiforme Hypnaceae Naples (South Italy) Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, 
Hg, K, Mg, Mn, Mo, Na, Ni, P, 
Pb, Sr, Ti, V, Zn

Giordano et al., 
2009

Sardinia (Italy) Cr, Cu, Ni, Zn, Pb Cortis et al., 2016

Sphagnum fuscum Sphagnaceae Mount Etna, Italy Tl, Bi, Se, Cd, As, Cu, B, Na, 
Fe, A

Calabrese et al., 
2015
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they may be transported inside the cell and retained in soluble 
form as intracellular fraction (Stanković et al., 2018). The ion 
exchange process is involved in extracellular accumulation of 
heavy metals (Breuer and Melzer, 1990). In certain cases, the 
heavy metals also form complexes with organic functional 
groups in the cell walls of bryophytes (Shakya et al., 2008). 
The polygalacturonic acid and other polymers present in the 
cell wall helps in the complexation process with heavy metals 
(Itouga et al., 2017). Several functional groups present in the 
cell wall of bryophytes acts as binding site of heavy metals. 
These include phosphodiester, carboxyl, phosphoryl, amine and 
polyphenol functional groups (González and Pokrovsky, 2014). 
Membrane transport proteins present in the cell membrane 
mediates transportation of heavy metals into the cells of the 
moss (Basile et al., 2012). The pattern of accumulation of metals 
on or within the moss is also an indication of the pattern 
of contamination. The extracellular fraction is indicative to 
current environmental contamination while the intracellular 
fraction indicates deposition or presence of contaminants for a 
prolonged period of time (Fernandez et al., 2006). Thus they can 
serve as an effective model system to determine the pattern of 
environmental contamination.

Mechanism Of Heavy Metal Stress
The mechanism of perception and counter heavy metal stress 
in bryophytes is similar to higher plants. Thus in this section, 
the mechanistic aspect of heavy metal stress in plants would 
be discussed in general and it can well be assumed that this 
system well applies to the bryophytes as well. Similar to other 
stresses, signalling pathways are involved in heavy metal stress 
of plants. These include perception of external signal followed 
by transmission of signal to the downstream components and 
ultimately induction of appropriate biochemical responses to 
neutralize harmful effects of the heavy metal mediated stress 
(Dutta et al., 2018). In plants excess of heavy metals alters the 
calcium channel activity in plants and results in increase of 
calcium flux within the cell. Within the cell, calcium acts as a 
second messenger and stimulates calmodulin which in turn 
regulates uptake of heavy metals, transport and metabolism 
(Ghori et al., 2019). Lead is reported to bind to all four calcium 
binding sites of calmodulin resulting in improper activation 
(Ouyang and Vogel, 1998; Kern et al., 2000). It is also reported 
that most of the metals acts as calcium analogues and results 
in induction of calmodulin in signal transduction pathway 
(Snedden and Formm, 2001). Nitric oxide is also reported to 
increase cytosolic calcium in plants in response to heavy metals 
or other abiotic stress. On the other hand NO synthesis is induced 
by increased concentration of cytosolic calcium. Thus nitric 
NO and calcium acts synergistically to acclimatize the plan in 
response to abiotic stress (Malik et al., 2020).

Generation of reactive oxygen species is one of the most 
common biochemical manifestations of plant in response to 
heavy metal stress. The metals induce generation of reactive 
oxygen species through stimulation of activity of NADPH 
oxidase, displacement of essential cations from specific binding 
sites of enzymes and inhibition of enzyme activities from their 
affinity of -SH groups (Shahid et al., 2014). A number of studies 
have demonstrated the generation of reactive oxygen species in 
plants in response to metal stress. It is found that Cd stress results 

in differential regulation of reactive oxygen species metabolism, 
redox homeostasis by NADPH oxidase and Respiratory burst 
oxidase homoluges (Gupta et al., 2017). Cd can regulate NADPH 
oxidase activity and expression of putative NOX/RBOG gene 
(Groppa et al., 2012). It is also assumed that Cd stress also affects 
plasma membrane H+-ATPase activity (Astolfi et al., 2003).It si 
also found that transcript levels of H+-ATPase (CsHA2, CsHA3, 
CsHA4, CsHA8, and CsHA9) genes increased upon treatment 
with cadmium (Janicka-Russak et al., 2012). Some elements of 
brassinosteroid pathways are activated in response to cadmium 
stress and H+-ATPase and NADPH oxidase mediate this activation 
(Jakubowska and Janika, 2017). In addition, lead and Nickel 
have been reported to induce oxidative burst and increase ROS 
production through activity of NOX like enzyme (Pourrut et al., 
2008), of all reactive oxygen species, hydrogen peroxide have 
the ability to cross the plasma membrane and therefore it is 
considered to be involved in cell to cell signalling (Slesak et al., 
2007; Niu and Liao, 2016). Hydrogen peroxide is also involved 
in downstream signalling cascades which functions by binding 
to calcium binding proteins and activation of phospholipid 
signalling and ultimately results in activation of MAPK  
pathway (Ghori et al., 2019). MAPKs are signalling molecules and 
play an important role in signal transduction pathway (Chardin 
et al., 2017). It is well documented that reactive oxygen species 
is responsible for activation of MAPKs (Jalmi and Sinha, 2015). 
Since a number of heavy metals disturbs the redox balance in 
plants, it can be well speculated that they are also involved in 
activation of MAPKs (Jonak et al., 2004). A wide array of other 
responses is also observed in plants in response to heavy metal 
stress. Salicylic acid is another important phenolic compound 
that is generated in plants in response to heavy metal stress. 
Under heavy metal stressed condition, salicyclic acid interacts 
with other plant hormones namely auxin, abscisic acid and 
gibberellin and promotes the generation of antioxidant 
compounds for counteracting the stress (Sharma et al., 2020). 
In addition to it, cadmium also trigger the synthesis of ethylene 
within the plant and is also presumed to have its own response 
in heavy metal stress (Schellingen et al., 2014). Proline also 
accumulates in the plant in response to heavy metals and is 
involved in neutralizing free radicals. In addition to it, proline also 
chelates the heavy metals (Hayat et al., 2012). In addition to it, 
heavy metals also stimulate the phenyl propanoid biosynthetic 
pathway by increasing the activities of phenylalanine ammonia 
lyase, shikimate dehydrogenase, glucose-6-phosphate 
dehydrogenase, cinnamyl alcohol dehydrogenase which results 
in production of polyphenols (Mishra and Sangwan, 2019). The 
phenolic compounds are involved in chelation of heavy metals 
on one hand and inhibiting lipid peroxidation on the other (Lavid 
et al., 2001; Kaur et al., 2009). It has also been reported that heavy 
metals increase the expression levels of genes of antioxidant 
enzymes namely Ascorbate peroxidase, catalase, superoxide 
dismutase and peroxidase and these enzyme play the role of 
scavenging the free radicals (El-Esawi et al., 2020). However, 
at higher concentration heavy metals result in inactivation of 
biomolecules either through blockage of functional groups or 
through displacement of essential metal atoms (Bhaduri and 
Fulekar, 2012). Heavy metals can inactivate catalase activity 
through inactivation of heme group bound to the enzyme 
(Malar et al., 2016). Thus, it is evident that heavy metal stress 
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induces a wide array of biochemical reactions in plants in order 
to counter the damaging effect. Though the mechanistic aspect 
is discussed mostly based on the responses of the higher plants 
but it is quite likely that the bryophytes also follow the same 
pattern.

co n c lu s I o n

With more progressive advancement of lifestyle, human has 
polluted the environment and making it difficult to dwell.  
So, proper precautions and adequate occupational hygiene 
should be taken in handling them. 

Accretion and maintenance of various types of pollutants 
by bryophytic plant groups helped in the elucidation of heavy 
metal emission prototypes. There is a great need to extend 
observations on mineral location and effect to a much wider 
range of species. With no cuticle, no developed roots, high 
surface/volume ratio and high cation exchange capacity, 
bryophytes has increased adsorbent efficacy. They accumulate 
large amounts of trace elements and also lack variability in 
morphology throughout the growing season (Giordano et al., 
2005). The role of morphological features in trapping particulate 
material is understudied but vital research field. The capability 
of the hepatics to accumulate heavy metal within its body is 
dependent on the surface area of the thallus and similarly for 
the moss, it is dependent on its leaf surface area and number 
of parenchymatous cells. 

It has been observed that bioaccumulation potential of 
mosses for metals depends upon their tolerance to the particular 
metal and varies greatly (Uniyal et al., 2017). The pleurocarpous 
are cushion-like and form a mat on the substratum; hence they 
can be considered as an ideal indicator of the metallic pollutant 
in the environment. This group of plant can be utilized as 
bryometer and are aptly utilized as ‘environmental specimen 
bank.’ Use of bryophytes for transplantation, as biomonitoring 
agents and as an indicator of pollution and minerals is simple, 
cost effective, reliable and convenient method, the only need is 
to select a suitable species to carry out the study. Amalgamation 
of moss biomonitoring with statistical analysis of the data plays 
an integral role in the identification of prone areas which are at 
risk of high atmospheric deposition and also in the investigation 
of spatial deposition flux (Maxhuni et al., 2016). It is therefore, 
suggested to advocate the use of appropriate techniques with 
the help of relevant bryophyte species. As mentioned earlier, 
bryophytes act as an excellent system in monitoring of heavy 
metals. However, study on their physiological responses and 
mechanistic aspects of their heavy metal tolerance or response 
is yet to be documented properly. It is therefore required to 
study the processes of signal transduction, transcript directive, 
homeostasis and biosynthesis defense proteins needs to 
be thoroughly studied in order to understand the stress 
tolerance mechanism in bryophytes. In addition, exploration 
of bryophytes at biochemical, protein and gene level should be 
promoted to understand the mechanism of heavy metal stress 
in the plant. At a whole bryophytes have proven themselves 
as a very effective model system to study and monitor metal 
pollution and further research is extremely relevant to have 
a deep insight in their mechanistic activity. In-depth study in 
molecular level is also required to understand the mechanism 

of acclimatization of bryophytes in varied stressed condition 
and this would help us to customize the requirement of this 
versatile species in monitoring activity as per requirement of 
the situation. Thus, bryophytes have immense potential as a 
monitoring agent and should be used diligently to study the 
environmental pollution.
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